Classification of Quasi-trigonometric Solutions of the Classical Yang–baxter Equation

نویسندگان

  • IULIA POP
  • ALEXANDER STOLIN
چکیده

It was proved by Montaner and Zelmanov that up to classical twisting Lie bialgebra structures on g[u] fall into four classes. Here g is a simple complex finite-dimensional Lie algebra. It turns out that classical twists within one of these four classes are in a one-to-one correspondence with the so-called quasi-trigonometric solutions of the classical Yang-Baxter equation. In this paper we give a complete list of the quasi-trigonometric solutions in terms of sub-diagrams of the certain Dynkin diagrams related to g. We also explain how to quantize the corresponding Lie bialgebra structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum seaweed algebras and quantization of affine Cremmer–Gervais r-matrices

We propose a method of quantization of certain Lie bialgebra structures on the polynomial Lie algebras related to quasi-trigonometric solutions of the classical Yang–Baxter equation. The method is based on an affine realization of certain seaweed algebras and their quantum analogues. We also propose a method of ω-affinization, which enables us to quantize rational r-matrices of sl(3).

متن کامل

On the construction of trigonometric solutions of the Yang-Baxter equation

We describe the construction of trigonometric R-matrices corresponding to the (multiplicity-free) tensor product of two irreducible representations of a quantum algebra Uq(G). Our method is a generalization of the tensor product graph method to the case of two different representations. It yields the decomposition of the R-matrix into projection operators. Many new examples of trigonometric R-m...

متن کامل

Some New Solutions of Yang - Baxter Equation

We have found some new solutions of both rational and trigonometric types by rewriting Yang-Baxter equation as a triple product equation in a vector space of matrices.

متن کامل

Degenerate Sklyanin Algebras

New trigonometric and rational solutions of the quantum Yang-Baxter equation (QYBE) are obtained by applying some singular gauge transformations to the known Belavin-Drinfeld elliptic R-matrix for sl(2,C). These solutions are shown to be related to the standard ones by the quasi-Hopf twist. We demonstrate that the quantum algebras arising from these new R-matrices can be obtained as special lim...

متن کامل

The Classical Hom-yang-baxter Equation and Hom-lie Bialgebras

Motivated by recent work on Hom-Lie algebras and the Hom-Yang-Baxter equation, we introduce a twisted generalization of the classical Yang-Baxter equation (CYBE), called the classical Hom-Yang-Baxter equation (CHYBE). We show how an arbitrary solution of the CYBE induces multiple infinite families of solutions of the CHYBE. We also introduce the closely related structure of Hom-Lie bialgebras, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008